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ABSTRACT

In the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) system

the land is forced by replacing the model-generated precipitation with observed precipitation before it rea-

ches the surface. This approach is motivated by the expectation that the resultant improvements in soil

moisture will lead to improved land surface latent heating (LH). Here aspects of the MERRA-2 land surface

energy budget and 2-m air temperatures T2m are assessed. For global land annual averages, MERRA-2 ap-

pears to overestimate the LH (by 5Wm22), the sensible heating (by 6Wm22), and the downwelling short-

wave radiation (by 14Wm22) while underestimating the downwelling and upwelling (absolute) longwave

radiation (by 10–15Wm22 each). These results differ only slightly from those for NASA’s previous re-

analysis, MERRA. Comparison to various gridded reference datasets over boreal summer (June–August)

suggests that MERRA-2 has particularly large positive biases (.20Wm22) where LH is energy limited and

that these biases are associatedwith evaporative fraction biases rather than radiation biases. For time series of

monthly means during boreal summer, the globally averaged anomaly correlations Ranom with reference data

were improved from MERRA to MERRA-2, for LH (from 0.39 to 0.48 vs Global Land Evaporation Am-

sterdam Model data) and the daily maximum T2m (from 0.69 to 0.75 vs Climatic Research Unit data). In

regions where T2m is particularly sensitive to the precipitation corrections (including the central United

States, the Sahel, and parts of South Asia), the changes in the T2m Ranom are relatively large, suggesting that

the observed precipitation influenced the T2m performance.

1. Introduction

The NASA Global Modeling and Assimilation Office

recently released theModern-Era Retrospective Analysis

for Research and Applications version 2 (MERRA-2;

Gelaro et al. 2017). This new global reanalysis product

replaces and extends the original MERRA atmo-

spheric reanalysis (Rienecker et al. 2011), as well as the

MERRA-Land reanalysis (Reichle et al. 2011). In ad-

dition to several other major advances,MERRA-2 uses

observed precipitation in place of model-generated

precipitation at the land surface during the atmospheric

model integration. The use of observed precipitation in

MERRA-2 was refined from the approach used for

MERRA-Land (Reichle et al. 2017b), which was an off-

line (land only) replay ofMERRA forced by atmospheric

fields from MERRA but with the precipitation forcing

corrected using gauge-based observations.

The motivation for using observed precipitation in

reanalyses is that precipitation is the main driver of soil

moisture, which in turn controls the partitioning of in-

cident surface radiation between latent heat (LH) and

sensible heat (SH) fluxes back to the atmosphere.

Reichle et al. (2017a) show that both MERRA-2 and
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MERRA-Land have improved upon the land surface hy-

drology of MERRA, showing better agreement with in-

dependent observational time series of soil moisture,

terrestrial water storage, streamflow, and snow amount.

Here, we extend this work, by evaluating the MERRA-2

surface energybudget and 2-m temperaturesT2m over land.

In particular, we focus on whether the improved hydrology

in both the (offline)MERRA-Land and the (coupled land–

atmosphere) MERRA-2 datasets translates into the ex-

pected improvements to themonthlymeanLHandSH.We

also expand previous work by evaluating the reanalyses’

land surface output globally, rather than focusing on loca-

tions with high-quality ground-based observations.

We start by comparing the long-term annual global

energy budget over land fromMERRA-2,MERRA-Land,

and MERRA to state-of-the-art estimates from the liter-

ature. These literature estimates, from Trenberth et al.

(2009), Wild et al. (2015), and the NASA Energy and

Water Cycle Studies (NEWS) program (NEWS Science

Integration Team 2007; L’Ecuyer et al. 2015), were each

produced by carefully combining multiple input datasets

with global energy balance constraints. Taken together

they represent our best understanding of the long-term

annual mean energy budget over land.

Next, we consider global maps of the performance of the

land surface turbulent heat fluxes from each reanalysis, as a

step toward linking differences in performance to the dom-

inant local physical processes and to the potential improve-

ments obtained from the use of the observed precipitation in

MERRA-2. We focus on the boreal summer [June–August

(JJA)], since land–atmosphere coupling is strongest and

surface turbulent heat fluxes are most active in the summer.

Unfortunately, there are no standard global gridded

reference datasets against which the reanalysis LH and

SH can be evaluated. Several recent efforts have com-

pared global LH estimates from different combinations

of reanalyses, offline land surfacemodels, and diagnostic

methods.Most estimates generally agree on the regional

patterns and local seasonal cycle of LH, although there

is considerable disagreement in the absolute values

and temporal behavior across different flux estimates

(Jiménez et al. 2011; Mueller et al. 2011; Miralles et al.

2011). Additionally, uncertainty in the basic model

structure is the largest source of disagreement (Schlosser

and Gao 2010; Mueller et al. 2013). While ground-based

observations are available from tower-mounted eddy co-

variance sensors (e.g., Baldocchi et al. 2001), the number

of towers (in the hundreds) is well below the sampling

needed for global estimation (and their locations are not

designed to sample globally representative land cover

types). Additionally, the measurements themselves have

considerable uncertainty and limited spatial representa-

tiveness (up to 1km).

In the absence of a standard reference, we compare the

JJA reanalysis turbulent heat flux estimates to two dif-

ferent gridded reference datasets: the Global Land

Evaporation Amsterdam Model (GLEAM) (Miralles

et al. 2011; Martens et al. 2017) for LH and FLUXNET-

Model Tree Ensembles (MTE) (Jung et al. 2010) for LH

and SH. These datasets were selected for several reasons:

(i) they are among the state of the art, (ii) they are

available globally for multidecadal time periods, (iii) they

are independent of each other, and (iv) they rely on very

different estimation methodologies (water balance mod-

eling for GLEAM and upscaling of tower measurements

for MTE). Since neither GLEAM nor MTE represents

direct observations of the turbulent heat fluxes, we also

compare each reanalysis to tower-based eddy covariance

observations from theFLUXNET2015dataset (FLUXNET

2015). To determine the potential contribution of radiation

biases to regional LH and SH biases, we also compare the

reanalyses’ surface radiation fields for JJA against gridded

observations from the Clouds and the Earth’s Radiant

Energy System (CERES) and Energy Balanced and Filled

(EBAF) dataset (Kato et al. 2013).

Finally, to test whether the changes in the surface

energy budget from MERRA to MERRA-2 have af-

fected the atmospheric boundary layer, we also evaluate

the JJA monthly mean daily minimum and maximum

T2m against observations from the Climatic Research

Unit (CRU) at the University of East Anglia (Harris

et al. 2014). Improvements in MERRA-2 due to the use

of observed precipitation cannot be isolated from the

many other advances distinguishing MERRA-2 from

MERRA. Consequently, we establish whether the im-

provements in the surface turbulent fluxes and T2m are

at least consistent with the expected improvements from

the use of observed precipitation, by cross-referencing

the evaluation results against the regional sensitivity to

precipitation and/or soil moisture.

This paper is organized as follows. Section 2 summa-

rizes the reanalysis and reference datasets used, and

section 3 presents the results, including evaluation of the

(i) reanalyses’ annual global land energy budget aver-

ages, (ii) the spatially distributed mean JJA energy

budget and T2m, and (iii) the temporal behavior of the

JJA turbulent heat fluxes and T2m. We also identify re-

gions of sensitivity to the observed precipitation forcing

inMERRA-2, for cross-reference against the evaluation

results. Our findings are summarized in section 4.

2. Methodology and data

a. The reanalyses

The coverage and resolution of each reanalysis is sum-

marized in Table 1, with further details below. MERRA
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(Rienecker et al. 2011) and MERRA-2 (Gelaro et al.

2017) are atmospheric reanalyses produced with the

NASA Goddard Earth Observing System Model, version

5 (GEOS-5), modeling and data assimilation system and

were designed to provide historical analyses of the hy-

drological cycle across a broad range of climate time scales.

To address shortcomings in the land surface hydrology

from MERRA, MERRA-Land (Reichle et al. 2011) was

released as an offline (land only) replay of MERRA, with

the model-generated precipitation corrected using rain

gauge observations and with minor, but important, model

parameter changes. MERRA-2 features several major

advances from MERRA, including an updated atmo-

spheric general circulationmodel, an updated atmospheric

assimilation system, an interactive aerosol scheme, and the

use of observed precipitation at the land surface (and to

compute wet aerosol deposition). In addition to the land

model updates fromMERRA-Land, MERRA-2 includes

several more updates relevant to the land, as outlined in

Reichle et al. (2017a). Most notably, the surface turbu-

lence scheme was revised, generally resulting in enhanced

SH over land (Molod et al. 2015).

The method used to apply the observed precipitation at

the land surface in MERRA-2 was refined from that used

in MERRA-Land (Reichle and Liu 2014; Reichle et al.

2017b). In MERRA-Land the precipitation was corrected

with daily Climate Prediction Center (CPC) Unified

(CPCU; Chen et al. 2008) precipitation observations ev-

erywhere. ForMERRA-2 the input precipitation differs in

two ways: (i) in the high latitudes the MERRA-2 model-

generated precipitation is retained, and (ii) overAfrica the

MERRA-2 precipitation is corrected with pentad-scale

blended satellite and gauge-based observations from the

CPC Merged Analysis of Precipitation (CMAP; Xie and

Arkin 1997) and the Global Precipitation Climatology

Project (GPCP; Huffman et al. 2009), version 2.1.

The land surface turbulent fluxes from the NASA

reanalyses (MERRA-2, MERRA-Land, and MERRA)

have not been explicitly evaluated globally. However,

Jiménez et al. (2011) and Mueller et al. (2011) both in-

cluded MERRA LH when merging multiple LH global

land datasets into a single enhanced estimate (see section

2b), and in both studiesMERRAwas among the highest of

the input LH estimates used. Additionally, Jiménez et al.
(2011) noted a sharp gradient in the MERRA LH around

108S in the tropics that was not present in other LH esti-

mates. This bias gradient was traced to MERRA’s exces-

sive rainfall canopy interception and precipitation errors

(Reichle et al. 2011). Consequently, the interception res-

ervoir parameters were revised for MERRA-Land (and

MERRA-2) to eliminate this feature (the interception

reservoir update was the most significant modeling change

from MERRA to MERRA-Land).

An additional reanalysis, ERA-Interim, from the Eu-

ropean Centre for Medium-Range Weather Forecasts

(Dee et al. 2011), is included in the evaluation of the

temporal behavior of the turbulent fluxes. In contrast to

the NASA reanalyses, ERA-Interim includes a land sur-

face updating scheme (deRosnay et al. 2014). Specifically,

the soil moisture, soil temperature, and snow tempera-

tures are updated to minimize errors in the forecast

screen-level relative humidity and temperature, while the

snow depths are updated using satellite- and ground-

based snow-cover and snow-depth observations.

b. Annual global land energy budget estimates

We compare the reanalyses’ annual global land en-

ergy budgets to three state-of-the-art estimates, from

Trenberth et al. (2009), Wild et al. (2015), and the

NEWS program estimates of L’Ecuyer et al. (2015).

Each of these is based on a weighted merger of multiple

modeled and observed datasets, and each applies to the

energy budget at the start of the twenty-first century. For

Trenberth et al. (2009) we have used their estimates for

the CERES period of 2000–04; Wild et al. (2015) nom-

inally refers to the same period, while L’Ecuyer et al.

TABLE 1. The reanalyses.

Dataset Variables used Output coverage and resolution (variable dataset citation, where available)

MERRA-2 1980–ongoing, hourly, 5/88 3 0.58
LH, SH, LWnet, SWnet, Global land (Global Modeling and Assimilation Office 2015b)

LWd Global surface (Global Modeling and Assimilation Office 2015a)

T2m
max, T

2m
min Global surface (Global Modeling and Assimilation Office 2015c)

MERRA-Land 1980–February 2016, hourly, 2/38 3 0.58
LH, SH, LWnet Global land (Global Modeling and Assimilation Office 2008c)

MERRA 1979–February 2015, hourly, 2/38 3 0.58
LH, SH, LWnet, SWnet, Global land (Global Modeling and Assimilation Office 2008b)

LWd Global surface

T2m
max, T

2m
min Global surface (Global Modeling and Assimilation Office 2008a)

ERA-Interim 1979–ongoing, monthly mean, 79-km

LH, SH Global surface
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(2015) nominally refers to 2000–09. Note that the

MERRA LH and SH over land were used as one of the

inputs in NEWS.

These three global energy budget studies all provide

continental and oceanic energy estimates, where ‘‘conti-

nental’’ is defined as nonocean and so includes land, land

ice, and lakes but excludes inland seas. By contrast, the land

estimates fromMERRA-2, MERRA-Land, and MERRA

apply to the area modeled by the land surface model, ex-

cluding land ice, lakes, and inland seas. The discrepancy due

to the inclusionor exclusionof land ice is significant: land ice

accounts for 10% of the continental area, with Antarctica

making up 95%of this. NEWS provides energy budgets for

each continent separately (L’Ecuyer et al. 2015), andweuse

their (balance constrained) energy budget estimates to

approximate the land-only energy budget terms by

subtracting the area-weighted Antarctica estimates

from the global continental estimates. We then use our

land-only NEWS estimates to approximate the conti-

nental to land ratio for each NEWS energy budget

term. By assuming that the same ratios apply to

Trenberth et al. (2009) and Wild et al. (2015) we then

approximate land-only estimates for the latter two

studies. L’Ecuyer et al. (2015) and Wild et al. (2015)

both provide uncertainty ranges for their globally av-

eraged continental estimates, which we have applied

unchanged to our approximated land-only estimates.

For LH, we have also used three additional global land

annual average estimates from the hydrology community,

from Jiménez et al. (2011), Mueller et al. (2011), and

Mueller et al. (2013). These estimates are also based on

merging modeled and observed estimates. Jiménez et al.

(2011) applies to global land (using a similar land definition

to the NASA reanalyses) for 1994, while Mueller et al.

(2011) applies to the global land area, excluding the

Sahara, from 1989 to 1995, and Mueller et al. (2013) ap-

plies to the global land plus Greenland for 1989–2005.

As previously noted, MERRA LH was one of the in-

puts used in the multiproduct mergers of Jiménez et al.
(2011) and Mueller et al. (2011).

c. Gridded reference datasets

The coverage and resolution of each gridded refer-

ence dataset, together with a brief summary of impor-

tant interdependencies with other datasets or reanalyses

used in the study and uncertainty estimates (where

available), are summarized in Table 2, with further de-

tails provided below.

1) GLEAM

GLEAM (version 3.1a) provides daily estimates of

terrestrial evapotranspiration, estimated from satellite

and reanalysis forcing using a Priestley and Taylor–

based model (Miralles et al. 2011; Martens et al. 2017).

The precipitation is from the Multi-Source Weighted-

Ensemble Precipitation, which is a multimodel merger

of established precipitation datasets, including the same

CPCU dataset used in MERRA-Land and MERRA-2,

as well as ERA-Interim precipitation [the latter is used

predominantly in the high latitudes, where observed

TABLE 2. The gridded reference datasets.

Dataset

Variables

used

Output coverage and

resolution Dependencies, error estimates where available

GLEAM v3.1a LH 1980–2016 daily mean, 0.258
global land

Uses a precipitation dataset that includes CPCU (used

in MERRA-2, MERRA-Land) and ERA-Interim

precipitation, uses T2m and radiation from ERA-Interim.

Compare tower obs, average ubRMSE: 20Wm22;

average Ranom: 0.42. Full details in section 2c(1).

MTE LH, SH 1982–2011 monthly mean, 0.58
global land, excluding

nonvegetated regions

Trained on an earlier generation of the FLUXNET2015

dataset. Uses a CRU-based T2m dataset and CPCU

precipitation (neither strongly influences temporal

behavior).

Compare withheld tower obs, average RMSE: 15Wm22 (LH and SH);

average Ranom: 0.57 (LH); 0.60 (SH). Full details in section 2c(2).

CRU v4.00 T2m
min, T

2m
max 1901–2015 monthly mean, 0.58

global land (data not

informed by station obs

have been removed)

Input station obs will overlap with T2m assimilated

into ERA-Interim.

Locally, it will be more uncertain where input station obs are sparse.

Full details in section 2c(3).

CERES-EBAF,

v4.0

SWd, SWu,

LWd, LWu

March 2000–February 2016

monthly mean, 18 global
surface

Uses atmospheric profile and Tskin from same system as

used in the NASA reanalyses (results in strong

dependence for LWu, LWd)

Compare ground obs average RMSE: 12 (SWd), 10Wm22 (LWd).

Full details in section 2c(4).

674 JOURNAL OF CL IMATE VOLUME 31



precipitation datasets are more uncertain (Beck et al.

2017)]. The net surface radiation and T2m are from

ERA-Interim. Compared to independent observations

from 91 flux towers, GLEAM has an average unbiased

root-mean-square error (ubRMSE; or error standard

deviation) of 20Wm22 and an average anomaly corre-

lation of 0.42 (Martens et al. 2017).

2) MTE

MTE provides global estimates of carbon dioxide,

energy, and water fluxes at the land surface, calculated

using a machine learning technique to upscale half-

hourly energy-balance-corrected eddy covariance

observations from 253 FLUXNET tower observations

(Jung et al. 2011). The input FLUXNET observations

are from the La Thuile data release, an earlier gen-

eration of the FLUXNET2015 dataset used here (to

be introduced in section 2d). CPCU precipitation

(again, used directly in MERRA-Land and MERRA-2)

and a T2m dataset based on CRU data (Jung et al.

2011) are used as predictive (regression) variables in

the MTE. However, these meteorological data have

little impact on the MTE monthly anomalies, which

are instead driven by the vegetation variability as

observed by the fraction of absorbed photosyntheti-

cally active radiation (fPAR; Jung et al. 2010). When

20% of the FLUXNET training data was withheld

from the algorithm, the average root-mean-square

error (RMSE) with the withheld data was 15Wm22,

for both LH and SH, and the average anomaly cor-

relation was 0.57 for LH and 0.60 for SH (Jung et al.

2011). In general, the MTE method is better suited to

estimating spatial variability and the seasonal cycle

than it is to capturing interannual anomaly patterns

(Jung et al. 2009).

3) CRU TEMPERATURE DATA

CRU time series version 4.00 (TS v4.00) provides

gridded monthly means of the daily mean, minimum,

and maximum temperature over land (Harris et al.

2014a,b). The temperatures are calculated from quality-

controlled climate station data, which are interpolated

onto the grid according to an assumed correlation decay

distance (set to 1200km for temperature variables). In

instances where no station data are available within the

assumed decay distance, the published data value de-

faults to the climatology. Here, such climatological

values have been screened out. Also, we require at least

10 data points to estimate each statistic for a given grid

cell. Even with this screening, the gridded output will be

much less certain when/where station coverage is less

dense, which occurs over Africa, South America, central

Australia, and the high latitudes.

4) CERES-EBAF RADIATION DATA

CERES-EBAF version 4.00 surface radiances are pro-

duced with a radiative transfer model after adjusting

modeled and observed input data for consistency with top-

of-atmosphere (TOA) CERES-EBAF radiation (Kato

et al. 2013). The input data (surface, cloud, and atmo-

spheric properties) are adjusted according to their

observation-based estimated uncertainties. The input

temperature and humidity profiles and land surface skin

temperatureTskin are fromNASA’sGEOS-5.4.1modeling

and assimilation system, the same system (although a dif-

ferent version) used in MERRA and MERRA-2.

The CERES output shortwave irradiances are pri-

marily determined by (observation based) TOA radia-

tion and clouds; hence, they are reasonably independent

of the MERRA and MERRA-2 reanalyses (Kato et al.

2013). On the other hand, the CERES output longwave

irradiances, and particularly the upwelling longwave

LWu, are strongly dependent on theGEOS-5Tskin input.

However, the CERES algorithm does adjust its input

GEOS-5 Tskin with observation-based cloud informa-

tion, so comparison between the CERES-EBAF and

GEOS-5 LWu partly reflects these observation-based

adjustments, even though the two fields are not in-

dependent. Compared to independent ground-based

observations from 24 sites over land, the RMSE of the

CERES-EBAF radiation is 12Wm22 for downwelling

shortwave SWd and 10Wm22 for downwelling long-

wave LWd (Kato et al. 2017). For the regional estimates

over land, Kato et al. (2017) estimated the uncertainty to

be 12Wm22 for SWd, 4Wm22 for upwelling shortwave

SWu, 10Wm22 for LWd, and 18Wm22 for LWu.

5) GRIDDED DATASET PROCESSING

As noted in Tables 1 and 2 some of the reference

datasets and reanalyses used here publish output that

applies only to the land fraction within each grid cell,

while others publish a single estimate that applies to all

surface types (land, permanent land ice, lakes, and

ocean) within each grid cell. All of the gridded datasets

and reanalyses were screened by removing all grid cells

where the MERRA-2 land fraction was less than 50%

(after interpolation to the relevant resolution) and then

aggregated up to monthly means and 18 spatial resolu-
tion. All maps of global statistics are based on the boreal

summer months of JJA only, and each comparison is

made over the maximum available coincident time pe-

riod, with the time periods noted in the relevant figure

captions. The anomaly correlations Ranom are evalu-

ated based on anomalies from the mean seasonal cycle

(calculated by subtracting the time period mean sepa-

rately for each calendar month). The gridded reference
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datasets were also used to estimate the annual global

land average values, for which the (interpolated)

MERRA-2 land area in each grid cell was used.

d. FLUXNET2015 tower observations

The FLUXNET2015 (FLUXNET 2015) sites were

selected by downloading all Tier 1 observations at non-

irrigated sites within grid cells classified as land at

18 resolution [as derived previously in section 2c(5)] and for
which at least a 10-yr data record is available. Eddy co-

variance sensors underestimate turbulent heat fluxes and

do not generally close the energy balance (Wilson et al.

2002); hence, we used the FLUXNET2015 energy bal-

ance closure-corrected LH and SH [see FLUXNET

(2015) for details of the correction method]. While these

corrections are rather uncertain, the corrected LH and

SH showed better agreement with all of the reanalyses

in Table 1 in terms of the means across all sites and the

correlation of the means between the sites (while having

negligible impact on the mean time series anomaly cor-

relations). The balance-corrected FLUXNET data were

screened to retain only days with less than 10% gap-filled

data and only sites with data for at least 2550 days (;70%

of 10 years). Themonthlymeans were then calculated for

months with at least 15 days of observations after the

above screening, and the corresponding reanalysis

monthly means were estimated using the same days. The

resulting FLUXNET monthly time series were visually

inspected, and obviously unrealistic features were re-

moved. Four sites with unrealistic time series were re-

moved. Of the remaining 21 stations, just one was in the

Southern Hemisphere. Since our evaluation focuses on

the boreal summertime, this site was excluded. The re-

maining 20 sites that have been used in this study are

listed in Table 1 of the supplemental material.

3. Results

a. Annual global land energy budgets

The globally averaged annual land energy budget es-

timates for MERRA-2, MERRA-Land, and MERRA

are illustrated in Fig. 1, with numerical values given in

Table 3. For each term, the estimates forMERRA-2 and

MERRA are similar (within 2–3Wm22), while the

partitioning ofRnet into LH and SH differs forMERRA-

Land, which is shifted toward greater SH. Compared to

MERRA, MERRA-Land has 11Wm22 more SH, and

8Wm22 less LH, with the difference in Rnet due to de-

creased LWu (recall that in the offline MERRA-Land

SWnet and LWd are taken directly from MERRA).

Figure 1 also includes the energy budget estimates

from the literature (see section 2b), as well as the annual

global land averages for each of the gridded reference

datasets in Table 2. In Fig. 1a, the MERRA-2 and

MERRA global land LH are higher than all of the other

estimates (although MERRA-2 is within the Jiménez
et al. (2011) andWild et al. (2015) confidence intervals).

The three (land adjusted) LH estimates from the global

energy budget studies (Trenberth et al. 2009; Wild et al.

2015; NEWS) are very similar to each other and toMTE,

GLEAM, Mueller et al. (2011), and MERRA-Land (all

are within 1Wm22). While the other two LH estimates

from the hydrology community (Jiménez et al. 2011;

Mueller et al. 2013) are higher, they are not as high

as MERRA-2 and MERRA. Compared to the aver-

age of the three global land energy budget estimates,

the MERRA-2 LH is biased high by 6Wm22 (15%),

while MERRA is biased high by 9Wm22 (21%), and

MERRA-Land is much closer, being biased high by just

1Wm22 (2%).

For the global land SH in Fig. 1b, MERRA-2 and

MERRA are both higher than Trenberth et al. (2009)

and Wild et al. (2015), although lower than NEWS (but

within the NEWS confidence interval) and very close

(within 1Wm22) to MTE. Compared to the average

of the three global land energy budget estimates,

MERRA-2 is biased high by 5Wm22 (15%) and

MERRA by 4Wm22 (12%), while MERRA-Land is

much higher, with a bias of 15Wm22 (42%).

The positive biases in both LH and SH from the

reanalyses indicate a positive bias in the incident energy

at the land surface. Indeed, Fig. 1g shows that Rnet from

the reanalyses exceeds the three global energy budget

estimates, although MERRA-2 (the lowest of the re-

analyses) is only slightly higher (2Wm22) than the

CERES-EBAF value. Compared to the average of the

three global energy budget estimates, the Rnet biases are

12Wm22 (15%) for MERRA-2, 13Wm22 (17%) for

MERRA, and 16Wm22 (21%) for MERRA-Land.

Figures 1c–f show that the positive Rnet bias in

MERRA-2 and MERRA is made up of a large positive

bias in SWd combined with insufficient LWu, both partly

offset by underestimated LWd. For SWd (Fig. 1c)

MERRA-2 and MERRA are higher than all three

global land energy budget estimates and CERES-

EBAF, with a bias compared to the three-product

average of 14Wm22 (7%) for MERRA-2 and 16Wm22

(8%) for MERRA. For SWu (Fig. 1d), MERRA-2 and

MERRA are both above NEWS, Trenberth et al.

(2009), and CERES-EBAF, but below Wild et al.

(2015) (although within the confidence interval). Both

are biased high by 3Wm22 (8%), compared to the three-

product average. For LWd (Fig. 1e), MERRA-2 and

MERRA are lower than the other estimates, with biases

of 211Wm22 (23%) for MERRA-2 and 210Wm22
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(23%) for MERRA against the three-product average.

For LWu (Fig. 1f) MERRA-2, MERRA-Land, and

MERRA are again lower than the other plotted esti-

mates, with biases of211Wm22 (23%) for MERRA-2,

213Wm22 (23%) for MERRA-Land, and 210Wm22

(23%) for MERRA.

The literature estimates in Fig. 1 are presented as

long-term means, and each represents different tempo-

ral and spatial coverage. Likewise, the annual global

land averages for the gridded reference datasets in Fig. 1

are based on the full available (spatial and temporal)

coverage for each. However, the gridded reference da-

tasets and reanalyses can be cross-screened to ensure

that they are compared with consistent coverage. With

this cross-screening, the MERRA-2 LH bias estimate is

7Wm22 versus GLEAM, or 9Wm22 versus MTE,

while the SH bias is 1Wm22 versus MTE, and the

FIG. 1. The global annual mean energy budget over land from the reanalyses [MERRA-2 (M-2); MERRA-Land (M-L);MERRA (M)],

the literature [NEWS (NEW), Trenberth et al. (2009) (Tre), Wild et al. (2015) (Wil), Jiménez et al. (2011) (Jim), Mueller et al. (2011)

(Mu1), and Mueller et al. (2013) (Mu3)], and the gridded reference datasets [MTE, GLEAM (GLM), and CERES (CER)], for (a) LH,

(b) SH, (c) SWd, (d) SWu, (e) LWd, (f) LWu, and (g) Rnet. For NEW, Tre, andWil, the land mean has been approximated from published

continental means as described in section 2b. Error bars are included where provided; for NEW and Wil these span the possible range

described bymultiple products, and for Jim andMu1 these represent one standard deviation acrossmultiple products (see citations for full

details).

TABLE 3. Global annual land average energy budget from

the NASA reanalyses (Wm22), estimated over an area of 130.23
106 km2.

SWd SWu LWd LWu Rnet LH SH

MERRA-2 204.6 40.7 312.6 385.5 91.0 47.8 42.2

MERRA-Land As for MERRA 384.1 95.1 42.5 52.1

MERRA 206.5 40.9 313.7 386.7 92.6 50.4 41.2
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radiation biases versus CERES-EBAF are 10Wm22

for SWu, 2Wm22 for SWd, 218Wm22 for LWd,

211Wm22 for LWu, and ,0.5Wm22 for Rnet. In gen-

eral, the above-quoted biases (calculated after cross-

screening) are all close (within 1Wm22) to the values

estimated from the data plotted in Fig. 1 (which does not

include cross-screening), with the exception of the LH

bias versus MTE, which is 6Wm22 without cross-

screening (compared to 9Wm22). This discrepancy is

due to the MTE global mean being lower than it oth-

erwise would be, due to the lack of coverage over the

Sahara (which has near-zero annual mean LH).

b. Land–atmosphere coupling and the MERRA-2
precipitation corrections

Here, we identify regions where, in MERRA-2, (i) LH

is sensitive to precipitation (or soil moisture), and (ii) the

daily maximum T2m (T2m
max) is sensitive to the applied

precipitation corrections. These regions can then be

used to determine where the change in performance

from MERRA to MERRA-2 is most likely associated

with the precipitation corrections. Note that for part ii

above, the diurnal temperature range could be expected

to have a stronger signal of the daytime turbulent heat

fluxes (Betts et al. 2017); however, a preliminary com-

parison (not shown) revealed similar results for the di-

urnal temperature range (DTR) and T2m
max, and we have

presented the results for T2m
max since this variable is in-

cluded in the published MERRA-2 datasets.

1) SOIL MOISTURE AND LATENT HEATING

To first order, LH (or evapotranspiration) from soil

and vegetation surfaces can be conceptualized as

either a moisture- or energy-limited process. In drier

conditions (i.e., for soil moisture below some critical

point), LH is moisture-limited in that it is restricted by

the amount of soil moisture available for evapotranspi-

ration. Temporal variations in LH will then be corre-

lated with the plant available soil moisture (principally,

the soil moisture in the root zone). In contrast, in more

humid conditions LH is energy limited; there is sufficient

soil moisture available for evapotranspiration, so LH

proceeds at the maximum rate determined by atmo-

spheric water demand, and temporal variations in LH

are accordingly correlated with temporal variations in

atmospheric demand (net radiation, atmospheric hu-

midity deficit, and wind) rather than soil moisture.

Figure 2 shows the squared correlation between the

JJAmonthly anomaly MERRA-2 LH and root-zone soil

moisture (SM) R2
anom(LH, SM). Lower R2

anom(LH, SM)

indicates a tendency toward energy-limitedLH,which for

the boreal summer occurs in the high latitudes, central

and eastern Europe, the eastern United States, southern

China, and much of the tropics (the Amazon, equatorial

Africa, and Southeast Asia). On the other hand, higher

R2
anom(LH, SM) indicates a tendency toward moisture-

limited LH and occurs across the remainder of the low

and midlatitudes. While we have plotted JJA to focus on

the boreal summer, there are still regions of moisture-

limited LH in the Southern Hemisphere during austral

winter, specifically in arid regions (southernAfrica, much

of Australia, and the desert and steppe regions of South

America).

2) PRECIPITATION FEEDBACK ON AIR

TEMPERATURE

Figure 3 shows maps of the squared anomaly corre-

lation R2
anom between anomaly time series of JJA

MERRA-2 monthly T2m
max and anomaly time series of

2-month (current1 previousmonth) averagedMERRA-2

precipitation. For example, the June T2m
max is compared to

the (May 1 June) precipitation, while the July T2m
max is

compared to the (June 1 July) precipitation, and so on.

The precipitation is lagged like this to allow the pre-

cipitation signal to accumulate in the soil and influence the

subsequent T2m
max. In Fig. 3a the MERRA-2 model-gener-

ated precipitation (PRECTOT) is used, while in Fig. 3b

the MERRA-2 observation-corrected precipitation

(PRECTOTCORR) is used. The R2
anom values are plotted

only for negative R values, since the dominant local

relationship between precipitation and daytime tempera-

ture is negative (i.e., under moisture-limited conditions,

reducedprecipitation leads to reduced soilmoisture, which

limits LH and increases SH and T2m). Figure 3b reflects

the modeled relationship in MERRA-2 between pre-

cipitation falling on the surface and T2m
max. Even with the

difference in time periods, the patterns are similar to those

found across the contiguous United States from observa-

tions by Koster et al. (2015).

Figure 3c then shows the difference betweenR2
anom(T

2m
max,

PRECTOTCORR) and R2
anom(T

2m
max, PRECTOT). This

FIG. 2. The R2
anom between monthly anomalies of LH and root-

zone SM in MERRA-2 for JJA. No value is plotted where the

correlation is negative.
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difference DR2
anom is the increase in the fraction of vari-

ance in T2m
max explained by the (observed) precipitation

seen by the land (PRECTOTCORR) over that explained

by the model-generated precipitation (PRECTOT). It

thus provides a measure of the local impact of the ob-

served precipitation on the MERRA-2 T2m
max. This mea-

sure is sensitive to both themagnitude of the precipitation

corrections and the local response of the atmospheric

model to those corrections. Note that the lack of sensi-

tivity in the high latitudes was inevitable for this metric,

since the model-generated precipitation is used there.

For the boreal summer, the strongest impact of the

observed precipitation, which can explain more than

25% of the T2m
max variance, is indicated in the central

United States, Central America, the northern tip of

SouthAmerica, a broad swath along the Sahel, and parts

of South Asia. Note that these regions do not directly

correspond to the regions of strongest moisture-limited

LH in Fig. 2, for at least two reasons. First, a strong

sensitivity of evapotranspiration to soil moisture (Fig. 2)

does not imply that the soil moisture variations are lo-

cally strong enough to induce large evapotranspiration

variations and thus large impacts on air temperature

(Fig. 3c). Second, as noted previously, the plotted sensi-

tivity also includes a signal of the size of the precipitation

corrections, and sowill be enhancedwhere the differences

between the model-generated and observation-corrected

precipitation are larger.

Figure 3c is consistent with previous studies identify-

ing hot spots of strong coupling between the land and

T2m. In particular Koster et al. (2006) and Miralles et al.

(2012) both identify similar regions of strong coupling

centered on the central United States/Central America

and the Sahel, although they do not agree as well over

South Asia. Over South Asia Koster et al. (2006) does

not locate a hot spot, while Miralles et al. (2012) iden-

tifies India as having the strongest coupling, and Fig. 3c

suggests patchy regions of coverage spanning from

Southeast Asia through the north of India.

For reference, the corresponding maps for the austral

summer (December–February) are shown in Fig. 1 of the

supplementalmaterial forR2
anom (LH, SM) andFig. 2 in the

supplemental material for the sensitivity to the pre-

cipitation corrections. In Fig. 1 of the supplemental mate-

rial, the R2
anom(LH, SM) over austral summer again shows

the expected pattern of moisture-limited LH in drier areas

of the summer hemisphere (almost everywhere, outside of

the tropics). As with the boreal summer, regions of

moisture-limitation LH extend into the winter hemisphere.

However, the effect of reduced radiation close to the poles

is now evident in the switch to energy-limited LH, even in

arid regions that are poleward of around 508 (such as cen-

tral Asia). Figure 2 in the supplemental material shows

strong sensitivity of T2m
max to the precipitation corrections

across nearly all of the SouthernHemisphere, including the

Amazon and tropical Africa. Since these latter two areas

typically have saturated soils, this strong signal is unlikely

due to the precipitation–soil moisture pathway and is per-

haps due to sensitivity of evaporative cooling from the

canopy interception to changes in the precipitation supply

to the interception reservoir.

c. Biases over boreal summer

In section 3a, the biases in the reanalyses’ global land

energy budgets were provided as annual means. The

seasonal cycle of the monthly mean global land biases

(not shown) reveal that the largest global land biases for

all budget terms occur in the boreal summer (JJA).

FIG. 3. JJA sensitivity of the monthly mean T2m
max to precipitation

in MERRA-2: R2
anom between the monthly mean T2m

max anomalies

and the two-monthly (current 1 previous months) precipitation

anomalies for (a) PRECTOT and (b) PRECTOTCORR, to-

gether with their difference (c) DR2
anom 5R2

anom(PRECTOTCORR,

T2m
max) 2 R2

anom(PRECTOT, T2m
max). Values are plotted only where

the correlation between T2m
max and precipitation is negative.
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Below, maps of these JJA biases are presented and

discussed, together with the corresponding biases in 2-m

air temperatures.

1) ENERGY BUDGET TERMS

Figure 4 shows maps of the reanalyses’ JJA biases in

LH and SH compared to each of GLEAM and MTE.

For LH, the regions of positive and negative biases rel-

ative to GLEAM or MTE are similar (cf. Figs. 4a,d,g,j

and Figs. 4b,e,h,k). For both, the LH biases depend on

the local LH regime, with energy-limited regions [low

R2
anom(LH, SM) in Fig. 2] generally having larger posi-

tive LH biases (.20Wm22; e.g., for MERRA-2 in

Figs. 4d,e across the tropics, South Asia, and the

northern high latitudes), while moisture-limited regions

[high R2
anom(LH, SM) in Fig. 2] tend to have smaller

biases (magnitude , 10Wm22). Consequently, the

spatial correlation between R2
anom(LH, SM) (as plotted

in Fig. 2) and the MERRA-2 LH biases is 20.65 for

GLEAM and 20.73 for MTE.

The MERRA LH biases (Figs. 4j,k) show some of the

same features as for MERRA-2, again with a tendency

for large positive biases in energy-limited LH regimes.

The most prominent difference is the sharp bias gradi-

ent in MERRA around 108S (most notable in South

America). As discussed in section 2b, this is associated

with the unrealistically large rainfall interception res-

ervoir in MERRA, combined with the MERRA pre-

cipitation errors; these problems have been alleviated in

MERRA-2 (and MERRA-Land). Additionally, there

are some isolated regions of large positive biases in

moisture-limited regimes in MERRA that are removed

in MERRA-2 (and MERRA-Land), such as in Mexico

and southern India.

Overall, in energy-limited regions [R2
anom(LH, SM) ,

0.5 in Fig. 2] the area-averaged LH bias in MERRA-2

(25.5Wm22 compared to GLEAM, and 29.9Wm22

compared to MTE) was slightly higher than for MERRA

(24.1Wm22 compared to GLEAM, 27.6Wm22 compared

toMTE), bothofwhich aremuchhigher than forMERRA-

Land (11.3Wm22 compared to GLEAM, and 7.6Wm22

compared to MTE). In contrast, in moisture-limited LH

regions [R2
anom(LH, SM) . 0.5 in Fig. 2], the area-

averaged LH bias is highest in MERRA (7.0Wm22

FIG. 4. The mean JJA turbulent fluxes, with (a) GLEAM LH, (b) MTE LH, and (c) MTE SH reference data, and the difference from

the reference data for (d)–(f) MERRA-2, (g)–(i) MERRA-Land, and ( j)–(l) MERRA. The statistics span 1980–2015 for GLEAM and

1982–2011 for MTE.
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compared to GLEAM, 5.2Wm22 compared to MTE),

and reduced in MERRA-2 (3.8Wm22 compared to

GLEAM, 1.5Wm22 compared to MTE), and even fur-

ther reduced in MERRA-Land (0.3Wm22 compared to

GLEAM, 22.9Wm22 compared to MTE).

Figures 4c,f,i,l show the reanalyses’ biases in SH

compared to MTE. In general, the SH biases for each

reanalyses have an inverse relationship with the LH

biases in Figs. 4b,c,e,f,h,i,k,l (for MERRA-2, the spatial

correlation between the SH biases and the LH biases

is 20.68 for GLEAM LH and 20.78 for MTE LH).

Consequently, the evaporative fraction [EF 5 LH/

(LH 1 SH)] biases compared to MTE in Figs. 5a,d,g,j

show a spatial pattern very similar to that of the LH

biases (for MERRA-2, the spatial correlation between

MTE LH and EF biases is 0.83).

The sum of LH and SH approximates the net in-

coming radiation (after neglecting the ground heat flux

and temporal change inTskin). Figures 5b,e,h,k and 5c,f,i,l

show, respectively, the biases in the reanalyses LH1 SH

sum compared to MTE and the biases in their Rnet

compared to CERES-EBAF. There is a weak

agreement between the Rnet biases suggested by MTE

and CERES-EBAF (for MERRA-2, the spatial corre-

lation is 0.46). Comparison to MTE (Figs. 5b,e,h,k)

suggests that the reanalyses net surface radiation

tends to be overestimated, with the largest biases

(.30Wm22) occurring over the Amazon, the Horn of

Africa, and the Tibetan Plateau. While comparison to

CERES-EBAF (Figs. 5c,f,i,l,) also suggests relatively

large positive biases over the Tibetan Plateau and the

Horn of Africa, these positive biases are smaller in both

magnitude and regional extent than was suggested by

MTE. Additionally, CERES-EBAF also indicates

strong negative biases (,230Wm22) over the Sahel

and the southeastern United States, particularly in

MERRA-Land (Fig. 5i) and MERRA (Fig. 5l). Finally,

intercomparing theRnet biases for each reanalysis shows

qualitatively that the broad patterns are similar in

MERRA-2 and MERRA (also MERRA-Land), al-

though MERRA has a tendency toward larger (positive

and negative) biases.

There is no obvious correspondence between the

regional biases in the LH (compared to GLEAM or

FIG. 5. Separation of mean JJA turbulent flux into EF and incoming radiation biases, with the (a) MTE EF, (b) MTE LH 1 SH, and

(c) CERES-EBAF reference data and the difference from the reference data for (d)–(f) MERRA-2, (g)–(i) MERRA-Land, and ( j)–(l)

MERRA. The statistics span 1982–2011 for MTE and 2000–15 for CERES-EBAF.
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MTE) and the regional biases in Rnet (compared to

either MTE LH 1 SH or CERES-EBAF). For exam-

ple, the spatial correlations are less than 0.1 between

the MERRA-2 LH bias (implied by comparison to

GLEAM or MTE) and the MERRA-2 LH 1 SH bias

(implied byMTE). Likewise, the spatial correlations are

again less than 0.1 between the MERRA-2 LH bias

(implied by GLEAM of MTE) and the MERRA-2 Rnet

bias (implied by CERES-EBAF). This suggests then

that the pattern of regional biases in the reanalyses LH

for JJA (compared to either GLEAM or MTE) are as-

sociated with differences in the partitioning of incoming

radiation into LH and SH, rather than with differences

in the surface radiation (compared to MTE or CERES-

EBAF) itself.

While radiation biases do not appear to be the main

predictor of LH biases, biased radiation will result in

biased LH and/or SH. Hence, we have partitioned the

JJA Rnet bias between MERRA-2 and CERES-EBAF

into the individual contributions from each radiation

term. Figure 6 shows the JJA biases betweenMERRA-2

and CERES-EBAF for SWnet, LWd, and LWu. In terms

of the direction of the biases, the broad patterns of re-

gional biases in the radiation terms are unchanged from

MERRA (not shown). The direction of the regionalRnet

biases for MERRA-2 in Fig. 5f largely mirror the re-

gional SWnet biases in Fig. 6d (spatial correlation: 0.75),

the main exception being over the southeastern United

States. The LW biases are somewhat balanced, in that

both are negative across most of the domain, with the

LWd bias in Fig. 6e typically being slightly more nega-

tive than the LWu bias in Fig. 6f. Both have rela-

tively large negative biases (magnitude . 30Wm22)

in Northern Hemisphere desert regions and smaller

(magnitude: 10–20Wm22) negative biases elsewhere. The

spatial distribution of the SWnet biases mirrors that of the

downwelling shortwave SWd (not shown), indicating that

the SWnet biases are primarily driven by SWd differences

rather than differences in the surface albedo used in

CERES-EBAF and GEOS-5. The above patterns of

overestimated SWnet (or SWd) and underestimated LWd

across much of the globe are consistent with a known

tendency for the GEOS-5 systems to underestimate

midlatitude continental cloud cover (Molod et al. 2012;

Wang and Dickinson 2013; Gelaro et al. 2015).

The LWu is calculated from Tskin, and the negative

biases in MERRA-2 (and also MERRA and MERRA-

Land) indicate a cool bias in the model Tskin. At 285K,

an LWu bias of 10Wm22 is roughly equivalent to a Tskin

bias of 2K. Recall that the CERES-EBAF LWu is not

independent of the MERRA suite of reanalyses, due to

its use of GEOS-5 Tskin. However, the input GEOS-5

Tskin is adjusted within the CERES-EBAF algorithm to

constrain the TOA irradiance, so comparison of GEOS-

5 and CERES LWu indicates the adjustment required to

the GEOS-5 Tskin to balance the TOA fluxes. Previous

work has also suggested that the GEOS-5 Tskin is un-

derestimated, particularly in dry regions. For example,

in agreement with our Fig. 6f, Draper et al. (2015) found

large cool biases in theGEOS-5Tskin over desert regions

in summer (their Fig. 5), compared to remotely sensed

observations. As argued in Draper et al. (2015), this

GEOS-5 Tskin cool bias is, at least in part, caused by the

model’s Tskin definition differing from that of a true skin

layer fromwhich LWu is emitted (or as is observed in the

thermal infrared).

In summary, the pattern of regional LH biases in the

reanalyses suggested by GLEAM and MTE are very

similar. This result adds confidence to the use of

GLEAM and MTE for estimating regional biases in the

FIG. 6. The mean JJA radiation terms, from (a)–(c) the CERES-EBAF reference data, and (d)–(f) difference from the reference data for

MERRA-2, for (left) SWnet, (center) LWd, and (right) LWu. The statistics span 2000–15.
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reanalyses. As with the annual global land averages in

Fig. 1, the maps presented here suggest that MERRA-2

and MERRA (but not MERRA-Land) have a general

tendency to overestimate LH. If the GLEAM, MTE,

and CERES-EBAF regional means are assumed to be

more accurate than the reanalyses, the above compari-

sons suggest that in energy-limited regions, MERRA-2

(and MERRA) overestimates LH as a result of an

overestimated evaporative fraction (i.e., too much in-

coming radiation is converted to LH rather than SH).

There is little change in the global average biases from

MERRA to MERRA-2. However, there are some iso-

lated regions in Mexico and South Asia that are typified

by moisture-limited LH, where MERRA has positive

LH biases associated with overestimated EF, while

MERRA-2 and MERRA-Land have much smaller

biases. The precipitation corrections in MERRA-2 (and

MERRA-Land) removed a relatively large amount of

precipitation across these locations (Reichle et al.

2017b, their Fig. 3b), strongly suggesting that the use of

precipitation observations in these products reduced the

LH biases.

2) AIR TEMPERATURE

The biases in the MERRA-2 and MERRA JJA

monthly mean daily minimum, daily maximum, and di-

urnal range in T2m, relative to the CRU dataset, are

shown in Fig. 7 (T2m is not calculated by the land-only

MERRA-Land system). For the daily minimum T2m

(T2m
min) in Figs. 7a,d,g, both reanalyses tend toward

positive (warm) biases, particularly MERRA. For

T2m
maxin Figs. 7b,e,h, MERRA-2 tends toward cool bia-

ses, with patches of warm biases across central Asia and

the Arabian Peninsula (investigation of the large pos-

itive bias in the Arabian Peninsula suggests it is asso-

ciated with an error in the CRU reference data, rather

than the reanalyses). For MERRA, these patches of

positive bias are expanded to cover most of the desert

region in the Northern Hemisphere and also much of

the Southern Hemisphere. For the DTR in Figs. 7c,f,i,

the MERRA-2 biases inherit the broad spatial pattern

of the T2m
max biases, while for MERRA some of the large

positive T2m
max biases are offset in the DTR by collocated

positive T2m
min.

The LH and SH biases in Fig. 4 and the DTR biases in

Fig. 7 show some of the expected regional similarities. In

particular, in the high latitudes and the Amazon

MERRA-2 has relatively large positive LH biases (and

negative SH biases) and relatively large negative DTR

biases. MERRA also has overestimated LH and un-

derestimated DTR in the same regions, as well as in

Southeast Asia and Central America. This is consistent

with an underestimated DTR caused by underestimated

SH (and overestimated LH), particularly given that the

Rnet bias is generally neutral in these regions in Fig. 5. It

should however be noted that the high latitudes and the

FIG. 7. The mean JJA T2m from (a)–(c) CRU reference data and the difference from the reference data for (d)–(f) MERRA-2 and

(g)–(i) MERRA, for (left) T2m
min, (center) T

2m
max, and (right) DTR. The statistics span 1980–2015, and white plotted over land indicates

insufficient CRU data.
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Amazon regions are both data scarce, and both the re-

analyses and reference datasets are less well con-

strained. In other regions there is less correspondence.

For example, the western United States also has un-

derestimated DTR for MERRA and MERRA-2, while

neither GLEAM nor MTE suggests overestimated LH.

Overall, the spatial correlations between the LH biases

and DTR biases are rather low (for MERRA-2, they

are 20.38 for GLEAM and 20.47 for MTE).

Recall that in section 3c(1) above, the CERES-EBAF

comparison suggested that the MERRA-2 (and

MERRA) Tskin is generally biased cool, with larger cool

biases in desert areas. However, a comparison of the

LWu biases in Fig. 6f to the T2m
min and T2m

max biases in

Figs. 7d,e shows little correspondence between them,

and in particular the regions of relatively large cool Tskin

biases (underestimated LWu) in the Northern Hemi-

sphere deserts do not have cool biases in either T2m
max

and T2m
min. This apparent contradiction between the

temperature biases suggested by comparison to the

CERES-EBAF LWu (;Tskin) and the CRU T2m does

not necessarily imply that one of these datasets is in-

correct, given the likelihood mentioned above that the

model Tskin biases are at least partly associated with the

model definition of Tskin.

d. Turbulent heat flux anomaly correlations over
boreal summer

Here the monthly mean turbulent heat flux time series

are evaluated over boreal summer based on their temporal

correlations Ranom with the reference datasets. Figure 8

shows maps of the JJA Ranom for each of the NASA re-

analyses (MERRA-2,MERRA-Land, andMERRA) and

ERA-Interim, with the Ranom calculated separately versus

each of the GLEAM and MTE turbulent heat fluxes. For

LH, the regional patterns in Ranom versus either GLEAM

(Figs. 8a,d,g,j) or MTE (Figs. 8b,e,h,k) show some similar

features (for MERRA-2, spatial correlation between

Figs. 8a and 8b: 0.69). Comparison to Fig. 2 again suggests

some dependence on the LH regime. In the Northern

Hemisphere, the LH Ranom is generally highest (;0.6) in

regions where LH is moisture limited and generally much

lower (,0.2) where LH is energy limited. The two ex-

ceptions are the high latitudes, which have high LH Ranom

and energy-limited LH, and the Sahara, which has low

LHRanom and is moisture limited (although LH variability

in the Sahara is very low, making the signal susceptible

to noise).

The Ranom patterns for ERA-Interim in Figs. 8j–l

provide some additional context for evaluating the

FIG. 8. The Ranom between (left) GLEAM LH, (center) MTE LH, and (right) MTE SH for (a)–(c) MERRA-2, (d)–(f) MERRA-Land,

(g)–(i) MERRA, and ( j)–(l) ERA-Interim for JJA. Statistics span 1980–2015 for GLEAM and 1982–2011 for MTE.
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NASA reanalyses. The LH Ranom values are generally

higher for ERA-Interim than for the NASA reanalyses.

As for MERRA-2, the ERA-InterimRanom versus MTE

is relatively low in many energy-limited LH regimes

(including the eastern United States, tropics, and South

Asia), while Ranom for ERA-Interim versus GLEAM is

more spatially consistent, in contrast to Ranom for

MERRA-2. The relatively high Ranom between GLEAM

and ERA-Interim LH in energy-limited LH regimes

may well be due to GLEAM having used ERA-

Interim radiation and temperature, since it is in these

regions that these fields will have the strongest influ-

ence on the LH. On the other hand, the lower Ranom

between the NASA reanalyses and the LH reference

datasets (and also between ERA-Interim and MTE)

could be attributed to errors in both the reference

datasets and the reanalyses under energy-limited

conditions. For MTE, this result was expected be-

causeMTE is thought to be more reliable in estimating

temporal variability in moisture-limited areas, since its

temporal variability is largely driven by fPAR (Jung

et al. 2010).

Moving on to SH, Figs. 8c,f,i,l showRanom versusMTE

for each reanalysis. The regional patterns are similar to

those for LH, with higher Ranom (.0.5) in moisture-

limited LH regions and lower (,0.2) values elsewhere.

ERA-InterimRanom versusMTE is generally higher than

the NASA reanalyses, with values greater than 0.5

across most of the globe (and particularly in the

Northern Hemisphere). Despite the improved LH from

MERRA-Land, the SH Ranom versus MTE is lower than

for MERRA (or MERRA-2).

Globally averaged, the rank order of the mean LH

Ranom, while rather low, is the same versus either

GLEAM or MTE and follows the expected progression

of improvement from MERRA, to MERRA-Land, and

then to MERRA-2. GLEAM suggests a larger im-

provement, from a globally averaged Ranom of 0.39 for

MERRA to 0.48 for MERRA-2, with MERRA-Land

falling in between (0.45).MTE suggests an improvement

from 0.29 for MERRA to 0.34 for MERRA-2, with

MERRA-Land again falling in between (0.32). For SH,

the globally averaged Ranom versus MTE is similar for

MERRA (0.36) and MERRA-2 (0.37), but is much

lower for MERRA-Land (0.28). For ERA-Interim, the

global mean Ranom for LH is ;0.1 higher than for

MERRA-2 (0.60 vs GLEAM and 0.44 vs MTE) and

;0.2 higher for SH (0.46 vs MTE). The better agree-

ment between ERA-Interim and the reference datasets

could be a consequence of the land surface updates

applied in ERA-Interim, which indirectly targets the

turbulent heat fluxes. [Although recall that the relatively

strong agreement between the GLEAM and ERA-

Interim LH will partly reflect their dependence; see

section 2c(2).]

e. Comparison to FLUXNET tower data

Since the reference datasets used above do not rep-

resent direct observations, we now compare the globally

averaged LH and SH statistics from section 3a (for the

annual mean turbulent heat fluxes over land) and sec-

tion 3d (for the mean JJA Ranom) to statistics calculated

against FLUXNET2015 (eddy covariance) tower ob-

servations. Figure 9 shows the annual mean of the tur-

bulent fluxes for the FLUXNET (eddy covariance)

measurements themselves and for each reanalysis and

reference dataset averaged across the 20 FLUXNET lo-

cations. For the global data sets, the global land annual

FIG. 9. Bar plot of themean annual (a) LH and (b) SH across the 20 FLUXNET site locations fromM-2,M-L,M,

FLUXNET (FlN), MTE, and GLM (LH only), calculated using each dataset at its native resolution (and screened

temporally for FLUXNET availability). For the global datasets, circles are plotted for the global land annual mean

(taken from Fig. 1).
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means (from Fig. 1) are also included for reference. For

LH, comparison to the FLUXNET observations agrees

with the results from the global land comparison in section

3a, again suggesting that the MERRA-2 LH is biased

high, although the FLUXNET observations suggest a

larger bias (of 12Wm22, or 30%) than was suggested by

the global comparison (estimated as 6Wm22 in section

3a). Averaged across the 20 FLUXNET sites, the MTE

LHis very close to theFLUXNETdata (within 0.5Wm22),

while GLEAM is slightly higher. For the interested reader,

Fig. 3 in the supplemental material shows scatterplots

comparing the MERRA-2 and reference dataset LH

annual means at the 20 individual sites.

For SH, the FLUXNET observations agree less well

with the global land comparison. First, the annualmean of

the FLUXNET data is about 10Wm22 below the global

mean estimates from the other reference datasets. For

each of the global reference datasets and reanalyses, the

annual average over the 20 FLUXNET sites is also

15–20Wm22 lower than the global average, suggesting that

the relatively low FLUXNET annual mean is associated

with the spatial sampling of the FLUXNET sites. Second,

averaged across the FLUXNET sites, the FLUXNET

mean SH is close to that of MERRA-Land, and above

that ofMERRA-2 (by 6Wm22; 18%). In contrast, for the

global averages in section 3a the reference datasets were

all close to MERRA-2 (and MERRA), with MERRA-

Land standing out as being biased high.

Figure 10 shows the JJA Ranom averaged over the

20 FLUXNET sites for each reanalysis versus each of

FLUXNET, GLEAM, and MTE, with the global aver-

age JJA Ranom from section 3d also included for

GLEAMandMTE. TheRanom values for the FLUXNET

data are quite low,which is somewhat expected due to the

mismatch in spatial representation between the tower-

based observations and the reanalysis. Nonetheless, the

FLUXNET Ranom (as well as the GLEAM and MTE

Ranom at the same locations) indicates similar relative

reanalysis performance as the global mean Ranom. In

particular, for LH MERRA-2 and MERRA-Land out-

performMERRA, as also indicated by the global means.

However, the one discrepancy is that theRanom versus the

FLUXNET data is similar for ERA-Interim and

MERRA-2, while the global comparisons (and also the

GLEAM andMTE data averaged across the FLUXNET

sites) all suggest that ERA-Interim outperforms

MERRA-2 (giving mean Ranom around 0.1 higher). For

SH, the rank order between the average JJA Ranom is the

same from the FLUXNET data than from the global

reference datasets, with the MERRA-Land Ranom again

being lower than that for MERRA (andMERRA-2) and

the ERA-Interim average Ranom being higher than that

for MERRA-2.

It is notable that over the FLUXNET tower sites, both

GLEAM and MTE have higher average Ranom with the

reanalyses than the FLUXNET observations do. In

particular, MTE was trained on an earlier generation of

the FLUXNET data, and the higher mean Ranom versus

MTE than versus FLUXNET suggests that the MTE

algorithm has added coarse-scale information (similar

quality control was applied here as was applied to the

tower observations used in MTE). For the interested

reader, Fig. 4 in the supplemental material shows scat-

terplots of the MERRA-2 LH Ranom versus each refer-

ence dataset at the 20 individual sites.

Note that for FLUXNET,Ranom for LH1 SH, plotted

in Fig. 10c, is consistently about 0.1 higher thanRanom for

either LH or SH separately. Decker et al. (2012)

obtained a similar result for the correlation between

reanalyses and tower observations. This indicates that

the eddy covariance measurements and the reanalyses

have a stronger agreement in the implied incoming

FIG. 10. Bar plot ofRanom over JJA averaged across the 20 FLUXNET site locations for (a) LH, (b) SH, and (c) LH1 SH between each

pair of the reanalyses [M-2,M-L,M, and ERA-Interim (E-I)] and the reference data (FlN,MTE, andGLM). TheRanom vs the FLUXNET

reference data use the reanalysis output at their reported spatial resolution (and screened temporally for FLUXNET availability), while

the Ranom vs GLEAM and MTE use reanalyses and reference data regridded to 18. For GLEAM and MTE, circles are plotted for the

global mean JJA Ranom (averaged over the panels of Fig. 8).

686 JOURNAL OF CL IMATE VOLUME 31



radiation than in the partitioning of that radiation into

LH and SH (this result is unchanged if Ranom values are

calculated from the FLUXNET data that have not been

energy balance corrected). This could be a signal of er-

rors in the partitioning within the reanalyses, or perhaps

just as likely, this difference is associated with the spatial

representation of the tower observations, since the in-

coming radiation is more spatially homogeneous than

either LH or SH on its own.

f. Precipitation corrections and air temperature
performance

Finally, we seek to establish whether the precipitation

corrections in MERRA-2 influenced the local T2m
max. We

do this by comparing the performance of theMERRA-2

andMERRAT2m
max to Fig. 3c, which shows theMERRA-2

sensitivity to observed precipitation. Figure 11 shows the

T2m
max Ranom versus CRU observations over JJA for

MERRA-2 and MERRA. In general, the MERRA-2

Ranom is high (.0.7) across most of the domain, particu-

larly in the high latitudes, with much lower (,0.4)

values across much of the tropics and parts of South

America, Africa, and South Asia. Note that the latter

regions all have relatively sparsely distributed CRU

station data, which is likely contributing to the lower

agreement with the reanalyses. Compared toMERRA,

the greatest improvements in the MERRA-2 T2m
max Ranom

occurred in the eastern United States, much of tropical

South America and Africa, the Sahel, and parts of South

Asia and China. There are also several regions where

the T2m
max Ranom is reduced, including northern South

America and much of Southeast Asia. Overall, the

global averaged T2m
max Ranom versus CRU was increased

from 0.69 for MERRA to 0.75 for MERRA-2.

Comparing Fig. 11c to Fig. 3c, the regions with the

strongest sensitivity of T2m
max to the precipitation correc-

tions generally have relatively large changes in the T2m
max

Ranom (including the Sahel, parts of South Asia, and

Central America). Consequently, where the metric in

Fig. 3c is above 0.25 (i.e., the observation-corrected

precipitation explains at least 25% more of the

MERRA-2 T2m
max variance than the model-generated

precipitation does), the area-averaged absolute change

in Ranom is 0.15, compared to an area-average absolute

change of 0.07 elsewhere. This tendency toward a rela-

tively large change in the T2m
max Ranom where T2m

max is sen-

sitive to the precipitation corrections suggests that the

observed precipitation in MERRA-2 contributed to the

change inT2m
max performance. Additionally, the change in

T2m
max Ranom in these regions is generally, although not

always, positive (giving an area averaged change in

Ranom of 0.06 where the metric in Fig. 3c is greater than

0.25). In some of the instances where the T2m
max Ranom is

degraded, this can be traced back to errors in the pre-

cipitation observation datasets input into MERRA-2.

For example, over Myanmar, the T2m
max Ranom is decreased

by more than 0.15, likely due to persistent local errors in

the precipitation observations input into MERRA-2

(Reichle et al. 2017b). Finally, there are also regions

with large changes in theT2m
max Ranom outside of the regions

of T2m
max sensitivity to precipitation (the eastern United

States, tropical Africa and South America, and central

China). The T2m
max Ranom is increased in MERRA-2 across

most of these regions, likely due to other advances (be-

yond the use of observed precipitation) in theMERRA-2

modeling and assimilation system.

4. Summary and conclusions

The land surface energy budgets of three reanalyses

from NASA (MERRA, MERRA-Land, and MERRA-

2) are compared here to the best available estimates

from the literature and to (largely) independent global

reference datasets. In terms of the global land annual

averages, the results suggest that theMERRA-2 LH and

SH are biased high by 5 and 6Wm22, respectively, while

SWu has a large positive bias of 14Wm22, SWd is biased

high by 3Wm22, and the upwelling and downwelling

LW components are biased low, by 11 and 13Wm22,

respectively. Compared to MERRA, this is a slight

FIG. 11. The (a) MERRA-2 Ranom vs CRU monthly mean T2m
max

and (b) the improvement in the T2m
max Ranom from MERRA to

MERRA-2, both over JJA. Statistics span 1980–2015, and white

plotted over land indicates insufficient CRU data.
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(;2Wm22) reduction in the LH and SWnet biases, while

the difference is even smaller for the LW terms

(;1Wm22). The radiation biases are associated with

known issues in the GEOS-5 models used in the re-

analyses, specifically a tendency to underestimate mid-

latitude continental clouds (Wang and Dickinson 2013)

and a cool bias in the model Tskin (Draper et al. 2015).

Compared to reference flux estimates from GLEAM

andMTE over the boreal summer (when both the fluxes

themselves and their biases are greatest), the largest

MERRA-2 LH biases (.20Wm22, vs either GLEAM

or MTE) occur in regions where LH is energy limited,

such as in the high latitudes, the tropics, parts of South

Asia, and the eastern United States. TheMERRA-2 LH

biases are typically smaller in regions where LH is

moisture limited, which include the drier regions of the

mid and low latitudes. In some of these moisture-limited

regions (parts of SouthAsia andMexico) the high bias in

the MERRA LH was largely removed in MERRA-2

(and MERRA-Land), likely because the observed pre-

cipitation used in the latter was lower than that pro-

duced by the MERRA (or MERRA-2) modeling

systems. Finally, comparison to the evaporative fraction

from MTE and to Rnet from CERES-EBAF or as in-

ferred from MTE LH 1 SH indicates that the regional

biases in the reanalyses LH are generally associated with

differences in the partitioning of Rnet into LH and SH

rather than with differences in the radiation input.

The temporal agreement between the reanalyses and

the reference datasets over boreal summer was mea-

sured using the monthly anomaly correlation Ranomover

JJA. For LH, the Ranom between the reanalyses and the

reference datasets (GLEAM and MTE) again showed

some dependency on the LH regime, with a tendency

toward better agreement where LH is moisture limited

than where it is energy limited. The lower agreement

in energy-limited regions does not necessarily imply

poorer performance in the reanalyses, as it may be due

to errors in the reference datasets. The globally aver-

aged Ranom values show the expected improvement in

skill with each new NASA reanalyses. For example,

MERRA-2 has slightly better globally averaged LH

Ranom (0.48 vs GLEAM) than MERRA-Land (0.45),

which is substantially better than MERRA (0.39). The

Ranom value was also calculated for the monthly mean

daily T2m
max versus CRU reference data over JJA. Aver-

aged over global land, the JJA T2m
max Ranom versus CRU

increased from 0.69 for MERRA to 0.75 forMERRA-2.

The results presented above for the regional biases and

Ranom were based on the boreal summer; however, the

same analysis has been performed over the austral

summer (not shown), yielding qualitatively similar

results.

The use of observed precipitation in MERRA-2 was

motivated by the hope that the subsequent improve-

ments in simulated soil moisture would lead to the im-

proved partitioning of incoming radiation between

latent and sensible heating, ultimately leading to im-

provements in the diurnal evolution of the boundary

layer. It is difficult, however, to unequivocally attribute

the improvements in MERRA-2 to the use of observed

precipitation because MERRA-2 includes many other

modeling and assimilation advances relative to MERRA.

Nonetheless, many of the improvements in theMERRA-2

LH and T2m are consistent with the changes expected

from the use of observed precipitation. MERRA-2 and

MERRA-Land have smaller positive LH biases and

higher LH Ranom than MERRA in regions where LH is

moisture limited and thus sensitive to precipitation

(South Asia and the western United States). This is

most easily explained by the forcing of the land surface

with observed precipitation in MERRA-2. Addition-

ally, regions where the MERRA-2 JJA T2m
max was most

sensitive to the precipitation corrections (the Sahel,

central United States, and parts of South Asia) generally

experience larger changes in the T2m
max Ranom from

MERRA to MERRA-2. However, the changes in Ranom

in these areas are not uniformly positive, and in some

cases degradedT2m
max Ranom can be traced back to problems

in the input precipitation datasets (e.g., over Myanmar).

In the future, the use of precipitation corrections could be

enhanced by also implementing a land data assimilation

scheme to update the model soil moisture according to

observations (e.g., Draper et al. 2011; Dharssi et al. 2011;

DeLannoy andReichle 2016). Bymaking use of remotely

sensed observations, the land data assimilation would be

particularly valuable in regions where the rain gauge

network is sparse or has known problems (e.g., in Africa

and parts of Southeast Asia).

However, some of the largest biases and lowest Ranom

for the MERRA-2 turbulent fluxes occur where the LH

is energy limited and thus less sensitive to improvements

in the precipitation and soil moisture. Hence, future

efforts to improve theMERRA-2 land surface turbulent

fluxes would best be focused on other facets of the

modeling and assimilation. Specifically, future GEOS-5

development should focus on the overestimated evap-

orative fraction where LH is energy limited. Addition-

ally, even though the MERRA-2 Rnet is relatively

unbiased (compared to CERES-EBAF), there are large

compensating biases in the individual SW and LW ra-

diation fluxes that are 2–3 times the magnitude of the

LH biases in terms of the global land annual averages.

Reducing the cloud bias in the atmospheric model will

help these biases, as will redefining the model Tskin to

generate a LWu more consistent with observations.
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Finally, the SH results for MERRA-Land are trou-

bling. While MERRA-Land did have the desired re-

duction in the LH biases compared to MERRA (to

1Wm22 in the global land annual average), it also had a

compensating, and much larger, increase in the SH bias

(up to 15Wm22 in the global land average). Addition-

ally, the JJA Ranom compared to MTE were reduced

fromMERRA to MERRA-Land (from a global average

of 0.36–0.28), despite the LH Ranom being increased. The

cause of the degraded SH in MERRA-Land is presently

unknown, but given the otherwise similar MERRA and

MERRA-Land land surface models and meteorological

forcing, an obvious possibility is that the use of observed

precipitation in an offline (land only) replay of an analy-

sis, such as MERRA-Land, can lead to inconsistencies in

the forcing (e.g., warm and dry air, stemming from dry

conditions inMERRA, overlying cold ground induced by

high antecedent rainfall from the observations). Such in-

consistencies would not appear in MERRA or (as much)

in MERRA-2, given the coupling in the reanalyses of the

land surface state with the overlying atmosphere.

While this work focused on evaluating surface energy

fluxes in MERRA-2, the findings have relevance to

anyone interested in designing a methodology to eval-

uate global estimates of turbulent heat fluxes. The

gridded LH reference datasets (GLEAMandMTE) had

better agreement with the reanalyses’ time series (as

measured byRanom) and were more useful for evaluating

the reanalysis output than were the tower observations.

In particular they offer (near) global coverage across

several decades, at similarly coarse resolution to the

reanalyses. In the absence of a recognized truth for LH

(or other similar terms), the recommended evaluation

strategy is to compare the product under evaluation to

multiple datasets. However, given the uncertainty in the

available reference datasets, extra care is necessary to

understand the methodology, input data, assumptions,

and potential dependencies and weaknesses of each

reference dataset. This process relies on expert judge-

ment and inevitably introduces some subjectivity into

the interpretation of the results. Further development of

global gridded LH datasets (including the quality and

quantity of ‘‘ground-truth’’ observations), to increase

their confidence would obviously be of great benefit to

this process.

The GLEAM and MTE reference datasets used here

are independent of each other and are based on very

different methodologies, thus providing complementary

information for use in an evaluation. However, given the

use of the common precipitation input data in GLEAM

as in MERRA-2, and the fact that MTE data are

not optimized to estimate interannual variability, LH

estimates from a third reference dataset would be

useful. Emerging global and multidecadal land surface

flux datasets based on an energy balance approach

(Anderson et al. 2011), or alternative observational

frameworks (Alemohammad et al. 2017) would provide

useful complements to GLEAM and MTE for a more

comprehensive analysis.
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